1. Introduction

The purpose of a Filed Flight plan (FPL) is to provide specified information to air traffic services (ATS) units about:

- The type of aircraft used and some of its characteristics.
- An intended flight or portion of a flight of an aircraft and its flight rules.
- The equipment according to the operation the crew is going to conduct.

2. ICAO Flight plan

In the IVAO network, the format chosen for building the flight plan is the ICAO standard. This ICAO flight is presented like the figure below.

The Flight plan shall include all information relevant to that specific planned flight. This includes:

- Item 7 - Aircraft identification (Note: Aircraft identification means the radio call sign!)
- Item 8 - Flight rules and type of flight
- Item 9 – Number of aircraft, type(s) of aircraft and wake turbulence category
- Item 10- Equipment on board
- Item 13 - Departure aerodrome ICAO code and planned time of departure
- Item 15 – First cruising speed and first cruising level or altitude
- Route to be followed
- Item 16 - Destination aerodrome ICAO code and total estimated elapsed time (EET)
- Item 17 - Alternate aerodrome(s)
- Item 18 – Remarks and other equipment (emergency and survival)
- Item 19 - Fuel endurance and total number of persons on board

The picture below shows the layout used in the ICAO real flight plan.

All clock times are expressed with 4 figures in UTC reference time.
3. IVAO flight plan

The IVAO flight plan can be find in the IvAp or x-IvAp IVAO interface.

In order to recognize a valid connection on IVAO network, a flight plan MUST ALWAYS BE FILED before any flight.
All pilots in IVAO must complete this flight plan before any flight.
4. Explanation of ICAO Flight Plan

To know each part of the Flight Plan (FPL), we will go through all the items in the FPL.

4.1. Item 7 - Aircraft Identification

Insert on item 7 one of the following aircraft identifications, not exceeding 7 alphanumeric characters and without hyphens or symbols:

- The ICAO designator for the aircraft operating agency followed by the flight identification (e.g. KLM511, NGA213, JTR25)
- The nationality or common mark and registration mark of the aircraft (e.g. EIAKO, 4XBCD, N2567GA)
- A special military call sign given by authorities: BAF54, USAF112, FAF020

A national registration marking is usually used for a general aviation VFR flight.
4.2. **Item 8 - Flight rules and type of flight**

Insert on item 8 one of the following letters to denote the category of flight rules with which the pilot intends to comply:

- I if it is intended that the entire flight will be operated under the IFR
- V if it is intended that the entire flight will be operated under the VFR
- Y if the flight initially will be operated under the IFR, followed by one or more subsequent changes of flight rules
- Z if the flight initially will be operated under the VFR, followed by one or more subsequent changes of flight rules

Specify in Item 15 the point or points at which a change of flight rules is planned.

Specify status of a flight following the indicator **STS** in Item 18, or when necessary to denote other reasons for specific handling by ATS, indicate the reason following the indicator **RMK** in Item 18.

<table>
<thead>
<tr>
<th>Flight plan understanding</th>
<th>Version 3.0</th>
<th>4 November 2017</th>
<th>Page 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>© IVAO HQ training department</td>
<td>Training Documentation Manager Erwan L’hotellier</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This manual is dedicated only for IVAO™ Network activities. This document must not be used in real aviation or in other networks.
4.3. Item 9 - Number and type of aircraft and wake turbulence category

Insert on the item 9, the number of aircraft, if more than one.
This number shall be 1 except for formation flight with multiple aircraft.

Be careful, do not mix, fly with other aircraft, perform own navigation and make a visual separation between each other and a formation flight that all the aircraft must be close to each other and doing the same manoeuvres at the same moment.
Insert on item 9 the appropriate aircraft type designator (as specified in ICAO Doc 8643, Aircraft Type Designators). This item size is 2 to 4 characters.

If no such designator has been assigned, or in case of formation flights comprising more than one type, insert on item 9 the 4 characters “ZZZZ”, and specify in Item 18, the (numbers and) type(s) of aircraft preceded by TYP/.
Insert on item 9, after the oblique stroke, one of the following letters to indicate the wake turbulence category of the aircraft:

- **H** for HEAVY, to indicate an aircraft type with a maximum certificated take-off mass of 136 000 kg or more
- **M** for MEDIUM, to indicate an aircraft type with a maximum certificated take-off mass of less than 136 000 kg but more than 7 000 kg
- **L** for LIGHT, to indicate an aircraft type with a maximum certificated take-off mass of 7 000 kg or less.

For each aircraft type, the wake turbulence category is determined by its **MTOM = Maximum Take-Off Mass**. The actual mass of an aircraft does not change its wake turbulence category.

Although the Boeing 757 belongs to the “Medium” wake turbulence category, because of the dangerous wake turbulence it produces, it is considered as a “Heavy” to aircraft flying behind it.

There is actually a fourth category called “super” which was established for the Airbus A380.
4.4. Item 10 – Equipment and Capabilities

Equipment and capabilities comprise the following elements:

- Presence of relevant serviceable equipment on board the aircraft;
- Equipment and capabilities commensurate with flight crew qualifications; and
- Where applicable, authorization from the appropriate authority.

Insert on item 10 one or several letters as follows:

- **N** if no COM/NAV/approach aid equipment for the route to be flown is carried, or the equipment is unserviceable
- **S** if standard COM/NAV/approach aid equipment for the route to be flown is carried and serviceable
- One or more of the letters presented in the table below to indicate the serviceable COM/NAV/approach aid equipment and capabilities available.

If the letter **S** is used, standard equipment is considered to be VHF RTF, VOR and ILS, unless another combination is prescribed by the appropriate ATS authority.

<table>
<thead>
<tr>
<th>Eq</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ground-Based Augmentation System (GBAS) is a safety-critical system that augments the GPS Standard Positioning Service (SPS) and provides enhanced levels of service. It supports all phases of flight</td>
</tr>
</tbody>
</table>

Remark: Alphanumeric characters not indicated in the table are reserved.
approach, landing, departure, and surface operations within its area of coverage.

The purpose of LPV is to fly ILS look-alike procedures published as RNAV GNSS with LPV minima, by using SBAS. These procedures with vertical guidance constitute a progress to approach safety.

C LOng RAnge Navigation (LORAN) C
is a terrestrial radio navigation system using low frequency radio transmitters to determine the location and speed of the receiver (i.e the aircraft in aviation context).

D Distance Measuring Equipment (DME) is a transponder-based radio navigation technology that measures distance between the equipment on ground and an aircraft by timing the propagation delay of VHF or UHF radio signals.

E1 Flight Management Computer (FMC) WayPoint Reporting (WPR) Aircraft Communications Addressing Reporting System (ACARS). A number of airlines routinely receive ACARS* position reports from their aircraft via satellite as part of their Airline Operational Control (AOC) flight monitoring. These position reports can be forwarded to an ATS provider and used to replace HF voice position reports. This method of delivery for aircraft position reports is known as FMC WPR. (*ACARS is a digital datalink system for transmission of short, relatively simple messages between aircraft and ground stations via radio or satellite.

E2 Data link (D)-Flight Information Services (FIS) Aircraft Communications Addressing Reporting System (ACARS). *). The flight information services provided can be weather reports and operational data. (*ACARS is a digital datalink system for transmission of short, relatively simple messages between aircraft and ground stations via radio or satellite.

E3 Pre-Departure Clearance (PDC) Aircraft Communications Addressing Reporting System (ACARS). Pre-departure clearance from ATC can be received in the cockpit via the ACARS. (*ACARS is a digital datalink system for transmission of short, relatively simple messages between aircraft and ground stations via radio or satellite.

F Automatic Direction Finder (ADF)
is a radio-navigation instrument that automatically and continuously displays the relative bearing from the aircraft to a suitable radio station.

G Global Navigation Satellite System (GNSS).
The term GNSS encompasses all the satellite navigation systems such as GPS, GLONASS, GALILEO

H High Frequency (HF) RadioTelephone (RTF). (Mainly used during oceanic flight)

I An Inertial Navigation System (INS) or Inertial Reference System (IRS) or Inertial Reference Unit (IRU) is a navigation aid that uses a computer, motion sensors (accelerometers) and rotation sensors (gyroscopes) to continuously calculate the position, orientation, and velocity (direction and speed of movement) of a plane without the need for external references.

J1 Controller Pilot Data Link Communications (CPDLC) Aeronautical Telecommunication Network (ATN) VHF Digital Mode 2(VDL2).
The ICAO VDL Mode 2 is the VDL version most commonly used. It was chosen for the Eurocontrol Link 2000+ program and is specified as the primary link in the EU Single European Sky rule adopted in January 2009 requiring all new aircraft flying in Europe after January 1, 2014 to be equipped with CPDLC.

J2 Controller Pilot Data Link Communications (CPDLC Future Air Navigation Services (FANS) 1/A High Frequency Data Link (HFDL).
FANS 1/A provides controller-pilot data link communications (CPDLC) and include air traffic control clearances, pilot requests and position reporting. FANS 1/A typically operates over satellite communications (SATCOM) and is mostly used in Oceanic airspace. FANS 1/A over HFDL provides air traffic control (ATC) communication coverage in the Polar region.
Controller Pilot Data Link Communications (CPDLC) Future Air Navigation Services (FANS) 1/A. FANS 1/A provides controller-pilot data link communications (CPDLC) and include air traffic control clearances, pilot requests and position reporting. FANS 1/A typically operates over satellite communications (SATCOM) and is mostly used in Oceanic airspace. VDL Mode A is also known as POA (Plain Old ACARS).

Controller Pilot Data Link Communications (CPDLC) Future Air Navigation Services (FANS) 1/A. FANS 1/A provides controller-pilot data link communications (CPDLC) and include air traffic control clearances, pilot requests and position reporting. FANS 1/A typically operates over satellite communications and is mostly used in Oceanic airspace. This indicator specifies that the data is transiting via the INMARSAT satellite network.

Controller Pilot Data Link Communications (CPDLC) Future Air Navigation Services (FANS) 1/A. FANS 1/A provides controller-pilot data link communications (CPDLC) and includes air traffic control clearances, pilot requests and position reporting. FANS 1/A typically operates over satellite communications and is mostly used in Oceanic airspace. This indicator specifies that the data is transiting via the MTSAT satellite network.

Controller Pilot Data Link Communications (CPDLC) Future Air Navigation Services (FANS) 1/A. FANS 1/A provides controller-pilot data link communications (CPDLC) and includes air traffic control clearances, pilot requests and position reporting. FANS 1/A typically operates over satellite communications and is mostly used in Oceanic airspace. This indicator specifies that the data is transiting via the Iridium satellite network. It allows worldwide voice and data communications including the poles, oceans and airways.

Microwave Landing System (MLS) is an aviation approach and landing system providing most accurate and reliable information for safe landings. This system overcomes the possible limitations of the ILS.

Instrument Landing System (ILS) is a ground-based instrument approach system that provides precision guidance to an aircraft approaching and landing on a runway.

Air Traffic Control (ATC) RadioTelephone (RTF) SATellite COMmunications (SATCOM) with data transiting via the INMARSAT satellite network.

Air Traffic Control (ATC) RadioTelephone (RTF) SATellite COMmunications (SATCOM) with data transiting via the MTSAT satellite network.

Air Traffic Control (ATC) RadioTelephone (RTF) SATellite COMmunications (SATCOM) with data transiting via the Iridium satellite network.

It shall be specified if no COM/NAV approach aid equipment for the route to be flown is carried, or the equipment is unserviceable.

VHF Omni directional Range (VOR) is a type of radio navigation system for aircraft. The system relies on ground based transmitters which emit signals to a VOR receiver inside the aircraft. The navigation signal allows the aircraft receiving equipment to determine a magnetic bearing from the station to the aircraft.

CPDLC RCP 400 transaction per second. REQUIRED COMMUNICATION PERFORMANCE type
may be used to prescribe operational communication requirements for an airspace based on the ATM functions that an airspace planner or ATS provider needs to implement within that airspace.

P2	CPDLC RCP 240 transaction per second. REQUIRED COMMUNICATION PERFORMANCE type may be used to prescribe operational communication requirements for an airspace based on the ATM functions that an airspace planner or ATS provider needs to implement within that airspace.
P3	SATVOICE RCP 400 transaction per second REQUIRED COMMUNICATION PERFORMANCE type may be used to prescribe operational communication requirements for an airspace based on the ATM functions that an airspace planner or ATS provider needs to implement within that airspace.
P4-P9	P4 to P9 is reserved for future Required Communication Performance (RCP).

R
R indicates the Perfromance Based Navigation (PBN) levels that can be met. It is used by ATC for clearance and routing purposes. The insertion of R in the field 10a requires PBN/ to be present in field 18. The PBN sub-field contains the RNAV and/or RNP certifications and operational approvals applicable for the flight.

S
It shall be specified if standard COM/NAV/approach aid equipment for the route to be flown is carried and serviceable. If the letter S is used, standard equipment is considered to be VHF RTF, VOR and ILS unless another combination is prescribed by the appropriate ATS authority. S= O+L+V

T
Tactical Air Navigation (TACAN) is a navigation system in UHF, giving the air crew continuous information as to its range and bearing from a beacon. It is similar to VOR but in UHF instead of VHF. TACAN is primarily used by military aircraft.

U
Ultra High Frequency (UHF) RadioTelephone (RTF). Radio equipment onboard the aircraft.

V
Very High Frequency (VHF) RadioTelephone (RTF). Radio equipment onboard the aircraft.

W
Reduced Vertical Separation Minima (RVSM) of 300m (1000ft) separation between aircraft was introduced on 24 January 2002 by 41 European and North African countries. RVSM provides six additional cruising levels between FL 290 and FL 410, resulting in substantial reductions in fuel costs and in-flight delays.

X
Minimum Navigation Performance Specification (MNPS) : a set of standards which require aircraft to have a minimum navigation performance capability in order to operate in MNPS designated airspace. The airspace is vertically defined between FL285 and FL410 and horizontally includes the following control areas: REYKJAVIK, SHANWICK, GANDER and SANTA MARIA OCEANIC plus the portion of NEW YORK OCEANIC which is North of 27N but excluding the area which is west of 60°W & south of 38°30’N.

Y
Very High Frequency (VHF) with 8.33 kHz spacing channel: it was decided in 1994 to introduce a further channel split from 25 to 8.33 kHz. Subsequently, 8.33 kHz was introduced above FL245 in the ICAO EUR Region from October 1999 and above FL195 from the 15 March 2007. At the time of writing Eurocontrol is working on the second phase of the mandate contained in the Commission Regulation (EC) No 1265/2007 which is the deployment of 8.33 kHz channel spacing to the airspace below FL195. The current date planned for the deployment in 2018.

Z
It indicates that other equipment or capabilities which are not specified in that Item, apply to that flight. These additional equipment or capabilities shall be specified in Item 18 preceded COM/, NAV/, DAT/

If the letter G is used, the types of external GNSS augmentation, if any, are specified in Item 18 following the indicator NAV/ and separated by a space.
If the letter R is used, the performance-based navigation levels that can be met are specified in Item 18 following the indicator PBN/.

If the letter Z is used, specify in Item 18 the other equipment carried or other capabilities, preceded by COM/, NAV/ and/or DAT, as appropriate.

After the oblique stroke, insert the surveillance equipment:

- **N** if no surveillance equipment for the route to be flown is carried, or the equipment is unserviceable
- **S** if Transponder Mode S is carried, including both pressure-altitude and aircraft identification capability
- one or more of the descriptors presented in the table below to describe the serviceable surveillance equipment and/or capabilities on board.

IvAp shall be considered as mode S transponder equipment in IVAO.

If you do not know which transponder type is serviceable on your aircraft, please use “S” type as the default one.
<table>
<thead>
<tr>
<th>Eq</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Transponder - Mode A (4 digits - 4096 codes)</td>
</tr>
<tr>
<td>C</td>
<td>Transponder - Mode A (4 digits - 4096 codes) and Mode C</td>
</tr>
<tr>
<td>E</td>
<td>Transponder Mode S, including aircraft identification, pressure-altitude and extended squitter (ADS-B) capability. Mode S: Whilst traditional Secondary Surveillance Radar (SSR) stations interrogate all aircraft within their range, Mode S (Select) establishes selective and addressed interrogations with aircraft within its coverage. Such selective interrogation improves the quality and integrity of the detection, identification and altitude reporting.</td>
</tr>
<tr>
<td>H</td>
<td>Transponder Mode S, including aircraft identification, pressure-altitude and enhanced surveillance capability. Mode S: Whilst traditional Secondary Surveillance Radar (SSR) stations interrogate all aircraft within their range, Mode S (Select) establishes selective and addressed interrogations with aircraft within its coverage. Such selective interrogation improves the quality and integrity of the detection, identification and altitude reporting.</td>
</tr>
<tr>
<td>I</td>
<td>Transponder Mode S, including aircraft identification, but no pressure-altitude capability. Mode S: Whilst traditional Secondary Surveillance Radar (SSR) stations interrogate all aircraft within their range, Mode S (Select) establishes selective and addressed interrogations with aircraft within its coverage. Such selective interrogation improves the quality and integrity of the detection, identification and altitude reporting.</td>
</tr>
<tr>
<td>L</td>
<td>Transponder Mode S, including aircraft identification, pressure-altitude and extended squitter (ADS-B) and enhanced surveillance capability. Mode S: Whilst traditional Secondary Surveillance Radar (SSR) stations interrogate all aircraft within their range, Mode S (Select) establishes selective and addressed interrogations with aircraft within its coverage. Such selective interrogation improves the quality and integrity of the detection, identification and altitude reporting.</td>
</tr>
<tr>
<td>N</td>
<td>It indicates that no surveillance equipment for the route to be flown is carried or the equipment is unserviceable.</td>
</tr>
<tr>
<td>P</td>
<td>Transponder Mode S, including pressure-altitude, but no aircraft identification capability. Mode S: Whilst traditional Secondary Surveillance Radar (SSR) stations interrogate all aircraft within their range, Mode S (Select) establishes selective and addressed interrogations with aircraft within its coverage. Such selective interrogation improves the quality and integrity of the detection, identification and altitude reporting.</td>
</tr>
<tr>
<td>S</td>
<td>Transponder Mode S, including both pressure-altitude and aircraft identification capability Mode S: Whilst traditional Secondary Surveillance Radar (SSR) stations interrogate all aircraft within their range, Mode S (Select) establishes selective and addressed interrogations with aircraft within its coverage. Such selective interrogation improves the quality and integrity of the detection, identification and altitude reporting.</td>
</tr>
<tr>
<td>X</td>
<td>Transponder Mode S, with neither pressure-altitude nor aircraft identification capability. Mode S: Whilst traditional Secondary Surveillance Radar (SSR) stations interrogate all aircraft within their range, Mode S (Select) establishes selective and addressed interrogations with aircraft within its coverage. Such selective interrogation improves the quality and integrity of the detection, identification and altitude reporting.</td>
</tr>
</tbody>
</table>

Remark: Alphanumeric characters not indicated in the table are reserved.

<table>
<thead>
<tr>
<th>Eq</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Automatic Dependent Surveillance-Broadcast (ADS). ADS-B makes use of GPS technology to determine and share precise aircraft location information,</td>
</tr>
</tbody>
</table>
and streams additional flight information to the cockpits of properly equipped aircraft. ADS–B consists of two different services: ADS–B Out and ADS–B In. B1 has the "out" capability only. ADS–B Out periodically broadcasts information such as aircraft identification, current position, altitude, and velocity, through an onboard transmitter. ADS–B Out provides air traffic controllers with real-time position information that is, in most cases, more accurate than the information available with current radar-based systems.

B2 Automatic Dependent Surveillance-Broadcast (ADS). ADS-B makes use of GPS technology to determine and share precise aircraft location information, and streams additional flight information to the cockpits of properly equipped aircraft. ADS–B consists of two different services: ADS–B Out and ADS–B In. B2 has both "in" and "out" capabilities. ADS–B Out periodically broadcasts information such as aircraft identification, current position, altitude, and velocity, through an onboard transmitter. ADS–B Out provides air traffic controllers with real-time position information that is, in most cases, more accurate than the information available with current radar-based systems. ADS–B In is the reception by aircraft of data which displays all aircraft in the area. Location information, and streams additional flight information to the cockpits of properly equipped aircraft. ADS–B consists of two different services: ADS–B Out and ADS–B In. B2 has both "in" and "out" capabilities. ADS–B Out periodically broadcasts information such as aircraft identification, current position, altitude, and velocity, through an onboard transmitter. ADS–B Out provides air traffic controllers with real-time position information that is, in most cases, more accurate than the information available with current radar-based systems. ADS–B In is the reception by aircraft of data which displays all aircraft in the area.

D1 Automatic Dependent Surveillance-Broadcast (ADS) Future Air Navigation System (FANS). The basic concept of the ADS-C application is that the ground system will set up a contract with the aircraft such that the aircraft will automatically provide information obtained from its own on-board sensors, and pass this information to the ground system under specific circumstances dictated by the ground system (except in emergencies). Contracts are INITIATED BY THE GROUND (ATC or Airlines Centre) and CAN NOT be modified by the pilot.

FANS are avionics system which provides direct data link communication between the pilot and the Air Traffic Controller. In the present use the communication is "position reporting".

G1 Automatic Dependent Surveillance-Broadcast (ADS) Aeronautical Telecommunication Network (ATN).

The basic concept of the ADS-C application is that the ground system will set up a contract with the aircraft such that the aircraft will automatically provide information obtained from its own on-board sensors, and pass this information to the ground system under specific circumstances dictated by the ground system (except in emergencies). Contracts are INITIATED BY THE GROUND (ATC or Airlines Centre) and CAN NOT be modified by the pilot.

U1 Automatic Dependent Surveillance-Broadcast (ADS) Universal Access Transceiver (UAT).

ADS-B makes use of GPS technology to determine and share precise aircraft location information, and streams additional flight information to the cockpits of properly equipped aircraft. ADS–B consists of two different services: ADS–B Out and ADS–B In. U1 has the "out" capability only. ADS–B Out periodically broadcasts information such as aircraft identification, current position, altitude, and velocity, through an onboard transmitter. ADS–B Out provides air traffic controllers with real-time position information that is, in most cases, more accurate than the information available with current radar-based systems.

U2 Automatic Dependent Surveillance-Broadcast (ADS) Universal Access Transceiver (UAT).

ADS-B makes use of GPS technology to determine and share precise aircraft location information,
and streams additional flight information to the cockpits of properly equipped aircraft.

ADS-B consists of two different services: ADS-B Out and ADS-B In. V2 has both “in” and “out” capabilities. ADS–B Out periodically broadcasts information such as aircraft identification, current position, altitude, and velocity, through an onboard transmitter.

ADS–B Out provides air traffic controllers with real-time position information that is, in most cases, more accurate than the information available with current radar-based systems.

ADS-B In is the reception by aircraft of data which displays all aircraft in the area.

V1
Automatic Dependent Surveillance-Broadcast (ADS) VHF Data Link (VDL).

ADS-B makes use of GPS technology to determine and share precise aircraft location information, and streams additional flight information to the cockpits of properly equipped aircraft. ADS–B consists of two different services: ADS–B Out and ADS–B In.

V1 has the "out" capability only.

ADS–B Out periodically broadcasts information such as aircraft identification, current position, altitude, and velocity, through an onboard transmitter.

ADS–B Out provides air traffic controllers with real-time position information that is, in most cases, more accurate than the information available with current radar-based systems.

V2
Automatic Dependent Surveillance-Broadcast (ADS) VHF Data Link (VDL).

ADS-B makes use of GPS technology to determine and share precise aircraft location information, and streams additional flight information to the cockpits of properly equipped aircraft. ADS–B consists of two different services: ADS–B Out and ADS–B In.

U2 has both “in” and “out” capabilities.

ADS–B Out periodically broadcasts information such as aircraft identification, current position, altitude, and velocity, through an onboard transmitter.

ADS–B Out provides air traffic controllers with real-time position information that is, in most cases, more accurate than the information available with current radar-based systems. ADS-B In is the reception by aircraft of data which displays all aircraft in the area.
4.5. Item 13 - Departure Aerodrome and planned time of departure

Insert on item 13 the **ICAO 4-letter location indicator** of the departure aerodrome (as specified in Doc 7910, Location Indicators) or, if no location indicator has been assigned, insert on item 13 the 4 characters “ZZZZ”.

When “ZZZZ” is inserted, you shall specify, in Item 18:

- The name and location of the aerodrome preceded by DEP/,
- The first point of the route or the marker radio beacon preceded by DEP/…,
- If the aircraft has not taken off from the aerodrome,
- If the flight plan is received from an aircraft in flight, insert AFIL, and specify, in Item 18, the ICAO four-letter location indicator of the location of the ATS unit from which supplementary flight plan data can be obtained, preceded by DEP/.

In IVAO, the ICAO code is mandatory. No IATA or Airfield names are allowed.

After the **ICAO 4-letter location indicator**, insert on item 13 an UTC time which is:

- the estimated off-block time (EOBT) for a flight plan submitted before departure,
- the actual or estimated time over the first point of the route to which the flight plan applies, for a flight plan received from an aircraft in flight.

The Estimated Off-Block Time (known as departure time) is the estimated time at which the aircraft will commence ground movement associated with departure.

It is coded using 2 figures for the hour followed by 2 figures for the minutes.
4.6. Item 15 – Route with cruising speed and level

Insert on item 15:

- The first cruising speed, then
- The first cruising level, then
- The route description

Insert the True airspeed for the first or the whole cruising portion of the flight, in terms of:

- **Kilometres per hour**, expressed as **K** followed by 4 figures (e.g. K0830)
- **Knots**, expressed as **N** followed by 4 figures (e.g. N0485)
- **True Mach number**, when so prescribed by the appropriate ATS authority, to the nearest hundredth of unit Mach, expressed as **M** followed by 3 figures (e.g. M082).

ICAO provision is to apply a Mach number notation only above FL250.

The speed value **K** or **N** is selected for the first part of the flight. If the required value changes en-route, the speed/level field for level changes should be stated in the route next to a fix.

Mach number is only given for flights in those airspaces where ATC prescribes (big example: North Atlantic.) There is no Flight Level above which Mach must be filed.
Insert the planned cruising level for the first or the whole portion of the route to be flown, in terms of:

- **Flight level**, expressed as **F** followed by **3 figures** (e.g. F085; F330)
- **Standard metric level** in tens of metres, expressed as **S** followed by **4 figures** (e.g. S1130)
- **Altitude in hundreds of feet**, expressed as **A** followed by **3 figures** (e.g. A045; A100)
- **Altitude in tens of metres**, expressed as **M** followed by **4 figures** (e.g. M0840), or
- the letters **VFR** for uncontrolled **VFR** flights

The letters **S** and **M** are used only in some countries. It depends on the local regulations.

Insert the planned cruising level for the first or the whole portion of the route to be flown, in terms of:

- **Flight level**, expressed as **F** followed by **3 figures** (e.g. F085; F330)
- **Standard metric level** in tens of metres, expressed as **S** followed by **4 figures** (e.g. S1130)
- **Altitude in hundreds of feet**, expressed as **A** followed by **3 figures** (e.g. A045; A100)
- **Altitude in tens of metres**, expressed as **M** followed by **4 figures** (e.g. M0840), or
- the letters **VFR** for uncontrolled **VFR** flights

The letters **S** and **M** are used only in some countries. It depends on the local regulations.

Note that “VFR” level is usually set when a VFR flight is performed below 3000ft where altitude is free to use.

Flights along designated ATS routes, insert on item 15:

- The designator of the first **ATS** route, if the departure aerodrome is located on or connected to the ATS route
- The letters **DCT** followed by the point of joining the first ATS route, followed by the designator of the ATS route, if the departure aerodrome is not on or connected to the ATS route,

Then insert each point at which either a change of speed and/or level is planned to commence, or a change of ATS route, and/or a change of flight rules is planned, followed in each case:

- by the designator of the next ATS route segment, even if the same as the previous one,
- by **DCT**, if the flight to the next point will be outside a designated route, unless both points are defined by geographical coordinates.

Note: When a transition is planned between a lower and upper ATS route and the routes are oriented in the same direction, the point of transition need not be inserted.

Flights outside designated ATS routes, insert on item 15:
Points normally not more than 30 minutes flying time or 370 km (200 NM) apart, including each point at which a change of speed or level, a change of track, or a change of flight rules is planned.

When required by appropriate ATS authority, define the track of flights operating predominantly in an east-west direction between 70°N and 70°S by reference to significant points formed by the intersections of half or whole degrees of latitude with meridians spaced at intervals of 10 degrees of longitude. For flights operating in areas outside those latitudes the tracks shall be defined by significant points formed by the intersection of parallels of latitude with meridians normally spaced at 20 degrees of longitude. The distance between significant points shall, as far as possible, not exceed one hour’s flight time. Additional significant points shall be established as deemed necessary.

For flights operating predominantly in a north-south direction, define tracks by reference to significant points formed by the intersection of whole degrees of longitude with specified parallels of latitude which are spaced at 5 degrees. Insert DCT between successive points unless both points are defined by geographical coordinates or by bearing and distance.

Example: BEBLA DCT RIMET DCT BIRKA

Use only the conventions described below and separate each sub-item by a space.

- ATS route
- Significant point
- Change of speed or level
- Change of flight rules
- Cruise climb

4.6.1. ATS route (2 to 7 characters):

The coded designator assigned to the route or route segment including, where appropriate, the coded designator assigned to the standard departure or arrival route (e.g. BCN1, BI, R14, UB10, KODAP2A)

4.6.2. Significant point (2 to 11 characters):

- **The coded designator (2 to 5 characters)** assigned to the point (e.g. LN, MAY, HADDY); Coded designator can be a FIX, a NAVAID, or ICAO airfield designator.

If no coded designator has been assigned, one of the following ways:

- **Degrees only (7 characters):** 2 figures describing latitude in degrees, followed by “N” (North) or “S” (South), followed by 3 figures describing longitude in degrees, followed by “E” (East) or “W” (West). Make up the correct number of figures, where necessary, by insertion of zeros, e.g. 46N078W.

- **Degrees and minutes (11 characters):** 4 figures describing latitude in degrees and tens and units of minutes followed by “N” (North) or “S” (South), followed by 5 figures describing longitude in degrees and tens and units of minutes, followed by “E” (East) or “W” (West). Make up the correct number of figures, where necessary, by insertion of zeros, e.g. 4620N07805W.

- **Bearing and distance from a reference point:** The identification of the reference point, followed by the bearing from the point in the form of 3 figures giving degrees magnetic, followed by the distance from the point in the form of 3 figures expressing nautical miles. In areas of high latitude where it is determined by the appropriate authority that reference to degrees magnetic is impractical, degrees true may be used. Make up the correct number of figures, where necessary, by insertion of zeros — e.g. a point 180° magnetic at a distance of 40 nautical miles from VOR “DUB” should be expressed as DUB180040.
4.6.3. Change of speed or level (maximum 21 characters):

- The point at which a change of speed (5% TAS or 0.01 Mach or more) or a change of level is planned to commence, expressed exactly as described in the significant point above, followed by an oblique stroke and both the cruising speed and the cruising level, expressed exactly as described above, without a space between them, even when only one of these quantities will be changed.

Examples: LN/N0284A045; MAY/N0305F180; HADDY/N0420F330; 4602N07805W/N0500F350; 46N078W/M082F330; DUB180040/N0350M0840

4.6.4. Change of flight rules (maximum 3 characters):

- The point at which the change of flight rules is planned, expressed exactly as described above as appropriate, followed by a space and one of the following:
 - VFR if from IFR to VFR
 - IFR if from VFR to IFR

Examples: LN VFR; LN/N0284A050 IFR
Example: GIBAL W616 LXR VFR DCT.
This means the flight will depart IFR and remain IFR till LXR, after LXR the flight will continue VFR
Example: GIBAL/N02860F120 IFR W616 LXR.
This means the flight will depart VFR and remain VFR till GIBAL, after GIBAL the flight will continue at a speed 260 kts at FL120, IFR.

4.6.5. Cruise climb (maximum 28 characters)

- The letter C followed by an oblique stroke;
- Then, the point at which cruise climb is planned to start, expressed exactly as described in significant point above, followed by an oblique stroke
- Then the speed to be maintained during cruise climb, expressed exactly as described above, followed by the two levels defining the layer to be occupied during cruise climb, each level expressed exactly as described above, or the level above which cruise climb is planned followed by the letters PLUS, without a space between them.

Examples: C/48N050W/M082F290F350; C/48N050W/M082F290PLUS; C/52N050W/M220F580F620.

In some countries, for VFR flights only, commonly used visual reference points can be inserted to indicate the intended flight path. (See the appropriate VFR navigation charts.)

4.7. Item 16 - Destination aerodrome, Total estimated elapsed time and destination alternate aerodromes

Insert on item 16 the ICAO 4-letter location indicator of the destination aerodrome (as specified in Doc 7910, Location Indicators), or if no location indicator has been assigned, insert on item 16 “ZZZZ” and specify in Item 18 the name and location of the aerodrome, preceded by DEST/.

Then insert on next item 16 the total estimated elapsed time. It is coded using 2 digits for the hour followed by 2 digits for the minutes.

In IVAO, the ICAO code is mandatory. No IATA or Airfield names are allowed.

The Estimated Elapsed Time (EET) is the time calculated:

- Between take-off time and the estimated time overhead the arrival aerodrome calculated for VFR flight rules
• Between take-off time and the estimated time at the expected IAF for IFR flight

For a flight plan received from an aircraft in flight, the total estimated elapsed time is the estimated time from the first point of the route to which the flight plan applies to the termination point of the flight plan.

All hours must be calculated in UTC time for all countries.

Insert on item 16 the ICAO 4-letter location indicator(s) of not more than two destination alternate aerodromes (as specified in Doc 7910, Location Indicators) separated by a space, or, if no location indicator has been assigned to the destination alternate aerodrome(s), INSERT “ZZZZ” and SPECIFY in Item 18 the name and location of the destination alternate aerodrome(s), preceded by ALTN/.
4.8. Item 18 - Other Information

This item includes all other information needed for the flight which is not present in the other items.

Insert on item 18 the character “0” (zero) if no other information, selected from those defined hereunder followed by an oblique stroke and the information to be recorded.

STS/

Reason for special handling by ATS, e.g. a search and rescue mission, as follows:
- ALTRV: for a flight operated in accordance with an altitude reservation;
- ATFMX: for a flight approved for exemption from ATFM measures by the appropriate ATS authority;
- FFR: fire-fighting;
- FLTCK: flight check for calibration of navaids;
- HAZMAT: for a flight carrying hazardous material;
- HEAD: a flight with Head of State status;
- HOSP: for a medical flight declared by medical authorities;
- HUM: for a flight operating on a humanitarian mission;
- MARSA: for a flight for which a military entity assumes responsibility for separation of military aircraft;
- MEDEVAC: for a life critical medical emergency evacuation;
- NONRVSM: for a non-RVSM capable flight intending to operate in RVSM airspace;
- RNAVINOP: for your aircraft which has no RNAV capabilities;
- SAR: for a flight engaged in a search and rescue mission;
- STATE: for a flight engaged in military, customs or police services.

PBN/

Indication of RNAV and/or RNP capabilities. Include as many of the descriptors below, as apply to the flight, up to a maximum of 8 entries, i.e. a total of not more than 16 characters.
- A1 RNAV 10 (RNP 10)
- B1 RNAV 5 all permitted sensors
- B2 RNAV 5 GNSS
- B3 RNAV 5 DME/DME
- B4 RNAV 5 VOR/DME
- B5 RNAV 5 INS or IRS
- B6 RNAV 5 LORANC
- C1 RNAV 2 all permitted sensors
C2 RNAV 2 GNSS
C3 RNAV 2 DME/DME
C4 RNAV 2 DME/DME/IRU
D1 RNAV 1 all permitted sensors
D2 RNAV 1 GNSS
D3 RNAV 1 DME/DME
D4 RNAV 1 DME/DME/IRU
RNP SPECIFICATIONS
L1 RNP 4
O1 Basic RNP 1 all permitted sensors
O2 Basic RNP 1 GNSS
O3 Basic RNP 1 DME/DME
O4 Basic RNP 1 DME/DME/IRU
S1 RNP APCH
S2 RNP APCH with BARO-VNAV
T1 RNP AR APCH with RF (special authorization required)
T2 RNP AR APCH without RF (special authorization required)

NAV/ Significant data related to navigation equipment, other than specified in PBN/, as required by the appropriate ATS authority. Indicate GNSS augmentation under this indicator, with a space between two or more methods of augmentation, e.g. NAV/GBAS SBAS.

COM/ Indicate communication equipment and capabilities not specified in item 10

DAT/ Indicate data communication equipment and capabilities not specified in item 10

SUR/ Indicate surveillance equipment and capabilities not specified in Item 10 b). Indicate as many RSP specification(s) as apply to the flight, using designator(s) with no space. Multiple RSP specifications are separated by a space. Example: RSP180 RSP400.

DEP/ Name and location of departure aerodrome, if ZZZZ is inserted in Item 13, or the ATS unit from which supplementary flight plan data can be obtained, if AFIL is inserted in Item 13. For aerodromes not listed in the relevant Aeronautical Information Publication, indicate location as follows:
 With 4 figures describing latitude in degrees and tens and units of minutes followed by “N” (North) or “S” (South), followed by 5 figures describing longitude in degrees and tens and units of minutes, followed by “E” (East) or “W” (West). Make up the correct number of figures, where necessary, by insertion of zeros, e.g. 4620N07805W (11 characters) or bearing and distance from the nearest significant point

DEST/ Name and location of destination aerodrome, if ZZZZ is inserted in Item 16. For aerodromes not listed in the relevant Aeronautical Information Publication, indicate location in LAT/LONG or bearing and distance from the nearest significant point, as described under DEP/ above.

DOF/ The date of flight departure in a six-figure format (YYMMDD, where YY equals the year, MM equals the month and DD equals the day).

REG/ The nationality or common mark and registration mark of the aircraft, if different from the aircraft identification in Item 7.

EET/ Significant points or FIR boundary designators and accumulated estimated elapsed times from take-off to such points or FIR boundaries, when so prescribed on the basis of regional air navigation agreements, or by the appropriate ATS authority.
Examples: EET/CAP0745 XYZ0830; EET/EINN0204

SEL/ SELCAL Code, for aircraft so equipped

TYP/ Type(s) of aircraft, preceded if necessary without a space by number(s) of aircraft and separated by one space, if ZZZZ is inserted in Item 9.
Example: TYP/2F15 5F5 3B2

CODE/ Aircraft address (expressed in the form of an alphanumerical code of six hexadecimal characters) when required by the appropriate ATS authority. Example: “F00001” is the lowest aircraft address contained in the specific block administered by ICAO.

DLE/ En route delay or holding, insert the significant point(s) on the route where a delay is planned to occur, followed by the length of delay using four-figure time in hours and minutes (hhmm).
Example: DLE/MDG0030
OPR/	ICAO designator or name of the aircraft operating agency, if different from the aircraft identification in item 7.
ORGN/	The originator’s 8 letter AFTN address or other appropriate contact details, in cases where the originator of the flight plan may not be readily identified, as required by the appropriate ATS authority.
PER/	Aircraft performance data, indicated by a single letter as specified in the Procedures for Air Navigation Services — Aircraft Operations (PANS-OPS, Doc 8168), Volume I — Flight Procedures, if so prescribed by the appropriate ATS authority.
ALTN/	Name of destination alternate aerodrome(s), if ZZZZ is inserted in Item 16. For aerodromes not listed in the relevant Aeronautical Information Publication, indicate location in LAT/LONG or bearing and distance from the nearest significant point, as described in DEP/ above.
RALT/	ICAO four letter indicator(s) for en-route alternate(s), as specified in Doc 7910, Location Indicators, or name(s) of en-route alternate aerodrome(s), if no indicator is allocated. For aerodromes not listed in the relevant Aeronautical Information Publication, indicate location in LAT/LONG or bearing and distance from the nearest significant point, as described in DEP/ above.
TALT/	ICAO four letter indicator(s) for take-off alternate, as specified in Doc 7910, Location Indicators, or name of take-off alternate aerodrome, if no indicator is allocated. For aerodromes not listed in the relevant Aeronautical Information Publication, indicate location in LAT/LONG or bearing and distance from the nearest significant point, as described in DEP/ above.
RIF/	The route details to the revised destination aerodrome, followed by the ICAO four-letter location indicator of the aerodrome. The revised route is subject to re-clearance in flight. Examples: RIF/DTA HEC KLAX ; RIF/ESP G94 CLA YPPH
RMK/	Any other plain-language remarks when required by the appropriate ATS authority or deemed necessary.

Example of some important remarks:

If you have no FMC, please insert "RMK/NOFMC"

IVAO recommended practices (NOT applicable for IVAO exams):

If you are a Newbie in the IVAO network, please insert “RMK/IVAO Newbie” in this item.

If your call sign of your company is not well known to ATC, please insert “CS/company_radio_call”
5. Item 19 - supplementary Information

This information is not filed with the flight plan, but is kept at the unit where the plan was filed. In case of emergency, the supplementary information will be transmitted to the appropriate rescue agencies.

After E/, insert on item 19 a 4-figure group giving the fuel endurance in hours and minutes.

After P/, insert on item 19 the total number of persons on board (passengers and crew), when required by the appropriate ATS authority. Insert the string “TBN” (to be notified) if the total number of persons is not known at the time of filing.

After C/ Pilot in command, you must fill in your real name and surname. The same name that you provided when you completed your IVAO registration form.
In the real flight plan there is other items not used in IVAO flight plan:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/ (RADIO)</td>
<td>CROSS OUT U if UHF on frequency 243.0 MHz is not available. CROSS OUT V if VHF on frequency 121.5 MHz is not available. CROSS OUT E if emergency locator transmitter (ELT) is not available.</td>
</tr>
<tr>
<td>S/ (SURVIVAL EQUIPMENT)</td>
<td>CROSS OUT all indicators if survival equipment is not carried. CROSS OUT P if polar survival equipment is not carried. CROSS OUT D if desert survival equipment is not carried. CROSS OUT M if maritime survival equipment is not carried. CROSS OUT J if jungle survival equipment is not carried.</td>
</tr>
<tr>
<td>J/ (JACKETS)</td>
<td>CROSS OUT all indicators if life jackets are not carried. CROSS OUT L if life jackets are not equipped with lights. CROSS OUT F if life jackets are not equipped with fluorescein. CROSS OUT U or V or both as in R/ above to indicate radio capability of jackets, if any.</td>
</tr>
<tr>
<td>D/ (DINGHIES)</td>
<td>CROSS OUT indicators D and C if no dinghies are carried, or INSERT number of dinghies carried; and INSERT total capacity, in persons, of all dinghies carried; and CROSS OUT indicator C if dinghies are not covered; and INSERT colour of dinghies if carried.</td>
</tr>
<tr>
<td>A/ (AIRCRAFT COLOUR AND MARKINGS)</td>
<td>INSERT colour of aircraft and significant markings.</td>
</tr>
<tr>
<td>N/ (REMARKS)</td>
<td>CROSS OUT indicator N if no remarks, or INDICATE any other survival equipment carried and any other remarks regarding survival equipment.</td>
</tr>
</tbody>
</table>

6. IVAO specific - Aircraft colour and markings (MTL-CSL)

After A/ aircraft type, you must choose the closest representation of your aircraft (texture with significant markings). This representation will be seen only by the other members in the IVAO Network.

Note that you never see this graphical representation; It is just for other members in order to enjoy all the simulation.
7. Example of flight plan

7.1. Flight AFR2063 with A321 from ESSA to LFPG

(FPL-AFR2063-IS
- A321/M-SDE2E3FGIRWY/H
- ESSA1325
- N0447F340 DCT DKR N872 SVD/N0446F360 N872 DEMIR UN872 EEL UP174
- WOODY UN872 NIK UY131 MOPIL DCT
- LFPG0225 LFPO
- PBN/A1B1C1D1S2 DOF/121115 REG/FGTAD EET/EKDK0047 EDWW0104 EHAA0124
- EBUR0145 LFFF0155 OPR/AFR)

7.2. Flight AFR006 with A388 from LFPG to KJFK

(FPL-AFR006-IS
- A388/H-SDE2E3GHIJ4J5M1RWXYZ/LB1D1
- LFPG1305
- N0484F380 DCT EVX UT300 SENLO UN502 JSY UN160 LIZAD/M085F380 UL739
- GAPLI DCT SOMAX/M085F380 DCT 49N020W 46N030W/M085F390 44N040W
- 42N050W 42N060W/M085F400 DCT DOVEY/N0483F400 N18C SAILE DCT ACK DCT
- SEY PARCH1
- KJFK0737 KBDL
- PBN/A1B1C1D1S1 NAV/RNVD1E2A1 DOF/121115 REG/FHPJE EET/LFRR0020
- EGTT0041 EISN0100 EGGX0135 02W0201 CZXQ0256 LPP00329 KZNY0355
- 050W0458 42N060W0559 KZBW0651 KZNY0727 SEL/CPHQ OPR/AFR RALT/KBGR
- RMK/NRP)

7.3. Flight AF156EK with A321 from LFPO to LFBO

(FPL-AF156EK-IS
- A321/M-SDE2E3FGIRWY/H
- LFPO1515
- N0447F350 DCT ERIXU UN860 VEGOB UN859 NARAK DCT
- LFBO0100 LFBP
- PBN/A1B1C1D1S2 DOF/121115 EET/LFBB0018 OPR/AFR RVR/075)

7.4. Flight AFR3583 with B77W from FMEE to LFPO

(FPL-AFR3583-IS
- B77W/H-SDE2E3FHIJ3J5J6M1M2RWXY/LB1D1
- FMEE1800
- N0505F300 DCT UVENA UR780 DENLI DCT 0700S04837E DCT ANTIS UM665
- MITCH/N0504F320 UM665 MAV UG300 TIKTUR611 ATMUL/N0493F340 R2
- DITAR/N0490F340 R2 BNA M621 OLMAX/N0487F340 UM621 AMANO UN982
- MALOG/N0487F360 UM729 DJL DCT
- LFPO1043 LFPG
- PBN/A1B1C1D1S1 DOF/121115 REG/FGSQP EET/FMMM0025 FSSS0134 HCSM0247
- HKN0329 HAAA0330 HSSS0444 HECC0611 HLLL0659 LMMM0812 LIRR0831
- LIMM0936 LSAS1000 LFMM1004 LSAS1005 LFEE1008 LFFF1020 SEL/FLCK
- OPR/AFR RALT/LIMC)
<table>
<thead>
<tr>
<th>Flight Plan</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5. Flight AF513UJ with A319 from LFTH to LFPO</td>
<td></td>
</tr>
<tr>
<td>(FPL-AF513UJ-IS)</td>
<td></td>
</tr>
<tr>
<td>· A319/M-SDE2E3FGIRWY/H</td>
<td></td>
</tr>
<tr>
<td>· LFTH0820</td>
<td></td>
</tr>
<tr>
<td>· N0435F320 JULEE DCT MRM UM976 PIBAT</td>
<td></td>
</tr>
<tr>
<td>· LFPO0110 LFQQ</td>
<td></td>
</tr>
<tr>
<td>· PBN/A1B1C1D1S2 DOF/121115 EET/LFFF0037 RVR/075 OPR/AFR ORGN/LFPGYEYX)</td>
<td></td>
</tr>
<tr>
<td>7.6. Flight AF506KO with CRJX from LFPO to LFTH</td>
<td></td>
</tr>
<tr>
<td>(FPL-AF506KO-IS)</td>
<td></td>
</tr>
<tr>
<td>· CRJX/M-SDE2E3FGIRWY/H</td>
<td></td>
</tr>
<tr>
<td>· LFPO1255</td>
<td></td>
</tr>
<tr>
<td>· N0430F270 LATRA UM133 LERGA UY30 MTL/N0420F200 UY30 XATE</td>
<td></td>
</tr>
<tr>
<td>· LFTH0046</td>
<td></td>
</tr>
<tr>
<td>· PBN/B1D1 DOF/121115 RVR/200 OPR/BZH ORGN/RPL)</td>
<td></td>
</tr>
<tr>
<td>7.7. Flight REU974 with B77L from LFPG to FMEE</td>
<td></td>
</tr>
<tr>
<td>(FPL-REU974-IS)</td>
<td></td>
</tr>
<tr>
<td>· B77L/H-SDE1E2E3GFHIJ4J5M1RWXYZ/LB1D1</td>
<td></td>
</tr>
<tr>
<td>· LFPG1845</td>
<td></td>
</tr>
<tr>
<td>· N0490F310 OKASI UL612 MILPA UM730 TOP UL50 ELB UL12 VELAD UM728 NERAR UP3</td>
<td></td>
</tr>
<tr>
<td>· RCA/N0489F350 UR611 TIKAT UG300 MAV UM665G ITLOX UM665 UVESO/N0486F370 DCT DENLI</td>
<td></td>
</tr>
<tr>
<td>· UR780 MIDRI UR780G UVENA</td>
<td></td>
</tr>
<tr>
<td>· FMEE1036 FIMP</td>
<td></td>
</tr>
<tr>
<td>· PBN/A1D1L1S1 NAV/RNP10 DOF/121114 REG/FOLRA EET/LSAS0039 LFFF0039 LIMM0048 LIRR0111</td>
<td></td>
</tr>
<tr>
<td>· LMMM0218 HLLL0237 HECC0343 HSSS0245 HAAA0545 HKNA0700 HCSM0701 FSSS0745 FMM0900</td>
<td></td>
</tr>
<tr>
<td>· SEL/CGFR ORGN/RUKOUU PER/C SRC/RQP RMK/ADS ACARS EQUIPPED TCAS EQUIPPED)</td>
<td></td>
</tr>
<tr>
<td>7.8. Flight AFR3041 with A332 from DNMM to LFPG</td>
<td></td>
</tr>
<tr>
<td>(FPL-AFR3041-IS)</td>
<td></td>
</tr>
<tr>
<td>· A332/H-SDE2E3FGHIJ3M1RWXY/LB1D1</td>
<td></td>
</tr>
<tr>
<td>· DNMM2240</td>
<td></td>
</tr>
<tr>
<td>· N0468F400 DCT LAG UR981 NY/N0461F410 UM608 TERAS/N0463F410 UM608</td>
<td></td>
</tr>
<tr>
<td>· BAY/N0463F400 UA604 MOS UA34 HAMRA/N0462F400 UN608 GIROM UN863 AGN</td>
<td></td>
</tr>
<tr>
<td>· UL873 FOUCO UT181 POI/N0450F280 UT182 KEPER/N0448F270 DCT</td>
<td></td>
</tr>
<tr>
<td>· LFPG0600 LFPO</td>
<td></td>
</tr>
<tr>
<td>· PBN/A1B1C1D1S1 DOF/121115 REG/FGZN EET/DSAC0025 DRRR0040 DAAA0156</td>
<td></td>
</tr>
<tr>
<td>· LECB0241 LFBB0456 LFFF0530 SEL/JKAP OPR/AFR RALT/LFBO RMK/NIGERIA</td>
<td></td>
</tr>
<tr>
<td>· FFR EXIT UR981 TENTU)</td>
<td></td>
</tr>
<tr>
<td>7.9. Flight VFR from Calais to Kortrijk-Wevelgem with DR400</td>
<td></td>
</tr>
<tr>
<td>(FPL-FWBTS-VG)</td>
<td></td>
</tr>
<tr>
<td>· DR40/L-S/S</td>
<td></td>
</tr>
<tr>
<td>· LFAC1600</td>
<td></td>
</tr>
<tr>
<td>· N0120VFR DCT LEQ DCT OKT DCT</td>
<td></td>
</tr>
<tr>
<td>· EBT0120 LFQQ</td>
<td></td>
</tr>
<tr>
<td>· OPR/PVT REQ/1 TOUGH AND GO AT LFQQ RMK/TRAINING FLIGHT)</td>
<td></td>
</tr>
</tbody>
</table>